Frobenius Map for Quintic Threefolds

نویسنده

  • I. SHAPIRO
چکیده

We calculate the matrix of the Frobenius map on the middle dimensional cohomology of the one parameter family that is related by mirror symmetry to the family of all quintic threefolds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Zeta-Function of a p-Adic Manifold, Dwork Theory for Physicists

In this article we review the observation, due originally to Dwork, that the ζ-function of an arithmetic variety, defined originally over the field with p elements, is a superdeterminant. We review this observation in the context of the family of quintic threefolds, ∑5 i=1 x 5 i − φ ∏5 i=1 xi = 0, and study the ζ-function as a function of the parameter φ. Owing to cancellations, the superdeterm...

متن کامل

Analytic Torsion for Calabi-yau Threefolds

After Bershadsky-Cecotti-Ooguri-Vafa, we introduce an invariant of Calabi-Yau threefolds, which we call the BCOV invariant and which we obtain using analytic torsion. We give an explicit formula for the BCOV invariant as a function on the compactified moduli space, when it is isomorphic to a projective line. As a corollary, we prove the formula for the BCOV invariant of quintic mirror threefold...

متن کامل

The Mirror Formula for Quintic Threefolds

has been intriguing algebraic and symplectic geometers since the beginning of the decade. The first proof of this formula was given two years ago in the extensive paper [9] among a number of other theorems on equivariant Gromov – Witten theory. Several authors managed to adjust the approach of that paper to complete intersections in homogeneous Kähler spaces [13, 2, 14], in toric manifolds [11,...

متن کامل

Clemens’s Conjecture: Part Ii

This is the part II of our series of two papers, “Clemens conjecture: part I”, “Clemens conjecture: part II”. Continuing from part I, in this paper we turn our attention to general quintic threefolds. In a universal quintic threefold X, we construct a family of quasi-regular deformations Bb such that the generic member in this family is non-deviated, but some special member is deviated. By the ...

متن کامل

Special Lagrangian Tori on a Borcea-voisin Threefold

Borcea-Voisin threefolds are Calabi-Yau manifolds. They are constructed by Borcea ([B]) and Voisin ([V]) in the construction of mirror manifolds. In [SYZ], Strominger, Yau and Zaslow propose a geometric construction of mirror manifolds using special Lagrangian tori (called SYZ-construction below). Using degenerate Calabi-Yau metrics Gross and Wilson show that SYZ-construction works for any Borc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008